Selouyanov on Endurance (Pt. 2): More Russian Sports Science from Dr. Smet

Guest author “Dr. Smet” finishes his insider’s tour of the Russian sports science underlying Pavel Tsatsouline’s long-awaited endurance training manifesto, The Quick and the Dead. I follow Dr. Smet’s blog Girevoy Sport After 40 to read about top-dog Russian coaching and research from a medical scientist who also practices what he reports on.

Before we start I have to make a disclaimer of sorts. Soviet sport scientists then and Russian scientists now often have fragmented interest and education in the field. Throughout his lectures Selouyanov makes statements that are debatable, to say the least, even though he doesn’t seem to have experience in the subject. For example, his view is tht the only way to increase the strength of the glycolytic muscle fibers is to lift maximal weights to failure. Therefore, if some powerlifters don’t follow that rule and still get strong – that must be steroids, no other explanation is possible. I am not qualified to argue the subject and am only conveying Selouyanov’s work, so take it or leave it. 

So let’s get to the most relevant parts of Selouyanov’s teachings. 

Muscle fibers 
Muscle fibers are loosely divided into three types, depending on the activity of the enzymes, in poarticular ATP-ase. Oxydative muscle fibers (type I) have slow ATP-ase, their speed of contraction is slow and they are resistant to fatigue. Glycolytic muscle fibers (type II) have fast ATP-ase, contract quickly and can be either resistant to fatigue (Type IIA) or not (Type IIB). 
For the purpoose of training muscle fibers can be looked at in the following way:
Oxidative fibers – have mitochindrial mass that cannot be developed further. Each myofibril is surrounded by a layer of mitochondria. These fibers use fatty acids in the active state. 
Intermediate fibers – have lower number of mitochondria. As the result two processes occur during activity: aerobic glycolysis and anaerobic glycolysis. During activity lactate and hydrogen ions are accumulated, so these fibers develiop fatigue, but not as fast as purely glycolytic type. 
Glycolytic fibers – have no or little motochondria, so that anaerobic glycolysis predominates, with the resulting accumulation of hydrogen ions and lactate. 

Factors that determine endurance

According to Selouyanov the difference in endurance can be fully explained by several factors. 
1) First, the development of the oxidative muscle fibers. Among well trained endurance athletes oxydative muscle fibers comprise 90 – 100% of the total muscle mass, therefore they don’t produce lactic acid in excessive quantities that cause significant acidosis and the resulting decline oin performance. To the contrary, among untrained individuals 50% of muscle consists of intermediate muscle fibers which, during their progressive recruitment during exercise, accumulate lactate. 
2) The second reason for better endurance among trained individuals is that their aerobic system switches on earlier, mostly because they have more oxidative fibers, so that the initial production of lactate is lower. 
3) Trained individuals utilize lactate more efficiently. Mitochondria are capable of utilising piruvate, and in the oxidative fibers piruvate is produced from lactate. 
 Fourth reason for better endurance – increased volume of the circulating blood. This, in turn, results in the reduced concentration of produced lactate.
The role of the heart. 
Endurance training leads to the dilatation of cardiac ventricles. This, in turn, makes cardiovascular system more efficient, in the way that the same cardiac output – the amount of blood the heart is capable of pushing though per minute – is achieved by fewer contractions. Training of the heart is a separate topic and will not be discussed here. 

Three types of exercises
All types of exercises utilised for the training of grapplers can be divided into three types. 

Effective exercises. 

  • Dynamic, maximal anaerobic power, to failure – facilitate the development of myofibrills in glycolytic and intermediate muscle fibers
  • Stato-dynamic, of maximal anaerobic power (100%), to failure (pain) – develop myofibrills in the oxidative and intermediate muscle fibers
  • Dynamic and stato-dynamic, of maximal alactic power, done to less than ½ of the limit, performed the light local muscular fatigue, repeated after normalisation of acidosis – facilitate some increase of the myofibrills and mitochondria in the glycolytic and intermediate muscle fibers
  • Dynamic exercises of near maximal power (90%), done to less than ½ of the limit, performed till light local muscular fatigue, repeated after the elimination of acidosis – facilitate some increase of the myofibrills and mitochondria in the glycolytic and intermediate muscle fibers
  • Dynamic exercises of submaximal (60 – 80%) power, done to less than ½ of the limit, performed till light local muscular fatigue and repeated after the elimination of excessive acidosis – facilitate some increase of the myofibrills and mitochondria in the glycolytic and intermediate muscle fibers

Harmful exercises.

  • All exercises of near or sub-maximal anaerobic power, as well as those of maximal aerobic power performed to the limit and causing excessive acidosis (pH < 7.1, lactate > 15 nMoll/L).

All other types of exercises have little useful effect for the development of endurance among grapplers. 
According to Selouyanov there are two ways to increase endurance and strength in skeletal muscle: increase the number of myofibrills and increase the number of mitochondria. Both are achieved differently in glycolytic (and intermediate) and oxidative muscle fibers, therefore we are left with four training modalities. 
In order to increase myofibrillar mass four factors must be present. 

  • Reserve of amino acids in the muscle cell (provided by consuming protein)
  • Increased concentration of anabolic hormones as the result of mental strain
  • Increased concentration of free creatine in muscle fibers
  • Increased concentration of hydrogen ions

Increasing the number of myofibrills in the glycolytic muscle fibers.
I suspect this part will make quite a few of us cringe. However, the goal of this post is to convey Selouyanov’s opinion on optimal training, so bear with me here. [Editor’s note: In effect, Selouyanov is about to ignore a core doctrine of Pavel Tsatsouline’s, namely the taboo against training to failure.] Glycolytic muscle fibers are activated when maximal muscular effort is required and no earlier. Therefore (according to the good professor), the growth of glycolytic muscle fibers can be achieved only by utilising weights of of maximal or near maximal intensity. The following conditions have to be present:

  • Intensity of maximal or near maximal intensity – more than 70% of 1RM
  • Exercise is performed to failure, i.e. to full exhaustion of CPn and achievement of high concentration of free creatine
  • Number of repetitions – 8 – 12. Last couple of reps have to be forced (with the help of a partner)
  • Rest – 5 minutes. Should be active, aerobic activity at HR of 100 – 120/min, this helps to utilise lactic acid
  • Number of sets: 7 – 9 if the goal is growth, 1 – 4 for tonic effect
  • Number of training sessions per day – one or two, depending on the intensity and athlete’s condition
  • Number of sessions per week – synthesis of myofibrills takes about 7 days, this is how long the athlete should rest after a training session done to the limit.

Myofibrillar hyperplasia in the oxidative muscle fibers
The method for developing myofibrills in oxidative fibers is similar to that for glycolytic muscle cells. With the exception that exercises are performed without relaxation. In that case the capillaries in the muscle are compressed, limiting circulation and leading to the hypoxia of the muscle fibers and the accumulation of lactate and hydrogen ions. 
I suspect this works similar to the occlusion (Kaatsu) training that became somewhat popular in the recent years. Selouyanov believes that mostly slow/oxidative muscle fibers grow under these conditions – Smet. 
To get the idea of this method imagine a barbell squat. Except that it is performed in the way that doesn’t allow for the pause at the top, with incomplete range. This way the muscles are continuously contracted to one degree or another, and after 20 – 30 seconds you get the burn, which is the desired effect. 
The conditions for the efficiency of this method are as follows: 

  • Intensity – medium: 20 – 40% of 1RM
  • No relaxation pohase during exercise, the muscles are continupusly contracted
  • Tempo and duration – slect the weight so that the athlete can perform 25 repetitions in 30 seconds. Last few repetitions should cause significant pain.
  • Rest – 30 seconds (active)
  • This exercise is performed in series of 3 – 5 sets. 25 reps in 30 seconds equals one set.
  • Number of series in one session: 1 – 2 for the tonic effect, 3 and more for growth.
  • Number of sessions per week – exercise is repeated in 3 – 5 days.

There is no mention of rest between series. I suppose it is several minutes, until the muscles feel relatively fresh.
Selouyanov recommends doing exercises aimed at growing muscle fibers at the end of the training session and better in the evening. If other types of training is done after this the reduction of glycogen can negatively interfere with the protein synthesis and impair growth. 
Development of mitochondria in skeletal muscle
Formation of mitochondria is controlled according to the principle of the functional criteria. According to this criterion, mitochondria that cannot properly function are eliminated. 
One of the natural factors leading to the destructurisation of mitochondria is hypoxia (e.g. being at altitude) and accompanying anaerobic metabolism. Similar processes occur during anaerobic training. 
Several generalisations can be made in regards to mitochondria: 

  • Mitochondria are energy stations of the cell and supply ATP by aerobic metabolism
  • Mitochondrial synthesis exceeds the destruction during conditions of their intensive functioning (oxidative phosphorilation)
  • Mitochondria tend to appear in the areas of the cells where the delivery of ATP is required
  • Intensive destructurisation of mitochondria occurs when the cell is functioning at high intensity in the presence of anaerobic metabolism which leads to the excessive and prolonged accumulation of ydrogen ions in the cell

Based on the above it is possible to develop methods of aerobic development of the cell. Every skeletal cell contains three types of muscle fibers. 

  • Those that are activated regularly during every day activity (oxidative)
  • Those activated only during training requiring moderate muscular activity (intermediate fibers)
  • Those that are seldom activated – only during maximal or near maximal effort, such as jumps, sprints etc. (glycolytic fibers)

In well trained individuals oxidative muscle fibers are maximally adapted. In other words, the number of mitochiondria in these muscles cannot be developed any more. It has been demonstrated that aerobic training at the level below anaerobic threshold in well trained athletes has zero value. 


Therefore, in order to increase aerobic potential of the muscle fiber it is necessary to build structural basis – new myofibrills. New mitochondria will then develop around these myofibrills. There is a special methodology which has been tested: interval training using two exercises. For example, pushups and pullups from low bar (unloaded, so that the feet are resting on the ground). 


General principles of such training are as follows: 

  • Exercises are performed at low intensity, i.e. 10 – 20% 1RM
  • Exercise is performed at medium or fast tempo
  • Full ROM is utilised
  • Duration – until early signs of local muscular fatigue
  • The template – 5 – 8 repetition of one exercise is followed by 5 – 8 repetitions of another without rest – that is 1 set
  • No pauses between sets
  • Number of sets – 5 – 10 (determined by the degree of fatigue) – that’s 1 circle
  • Number of circles in a session – 1 – 5 (fatigue and is determined by the glycogen stores in muscle tissue)
  • Session done at maximal volume can be repeated after 2 – 3 days, after glycogen stores are restored

Selouyanov on Endurance (Pt. 1): A Guest Post by Dr. Smet

Russian training methods and Russian sports science. Raise your hand if you (a) love these things but (b) don’t read Russian. Then you probably owe almost everything you know to Pavel Tsatsouline, THE great interpreter of that subject and almost the most influential voice in American exercise. Pavel created an appetite for English-language popularizations of Russian training research much greater than any one man can satisfy, even a pedagogical genius like Pavel. Today guest author “Dr. Smet,” a Russian-educated physician practicing abroad, takes us behind the curtain of Pavel’s latest book for a direct look at some of its source material. Dr. Smet’s blog Girevoy Sport After 40 is required reading for lean solid dogs, lazy badasses, and grapplers and kettlebell competitors. He has graciously allowed me to cross-post his original piece. -Dog in Chief

Pavel Tsatsouline has finally published his long-awaited book on endurance training, the Quick and the Dead. Despite the hype, in the end I was underwhelmed. Don’t get me wrong: the book has useful information but, as it makes clear on the last page, it is a long infomercial for the StrongFirst Strong Endurance seminar.

Victor Nikolaevich Selouyanov (1946-2017)

The material in the book is based on the research of a few Russian sport scientists and coaches, most notably Victor Selouyanov, previously mentioned in my blog [Girevoy Sport After 40 -ed.] in the post “The Heart is not a Machine.” Selouyanov was a bit of a renegade, and because of disagreements with the science establishment he never completed his doctorate. Nevertheless, his contribution to the understanding of training endurance was invaluable, and Russian sports science is still bitterly divided between his followers and opponents.

Selouyanov wrote several books, among them two that are of interest to me: Physical Preparation of Grapplers and The Development of Local Muscular Endurance in Cyclical Sports. Both deal with endurance, and Selouyanov’s concepts allow a systematic approach to training endurance in pretty much any sport. I will briefly and loosely summarize the most relevant parts of the book for grapplers (my current love).

Muscle fibers

From practical point of view Selouyanov was talking about two distinct groups of muscle fibers: glycolytic and oxidative. Glycolitic muscles are capable of producing great force, but because they are not very good users of oxygen they get tired quickly – in a few seconds – and are not very useful for activity that requires endurance. Oxidative fibers, on the other hand, do not produce as much force, but are virtually impossible to fatigue in aerobic conditions. Their power production drops from maximal to about 80% and stays there for a long time.

What gets oxidative muscle fibers at the end is the accumulation of lactic acid and, more precisely, hydrogen ions and the resulting acidosis. It happens if the production of lactate exceeds its elimination, which happens when you demand too much work from your muscles.

Oxidative muscles are good users of oxygen because of large number of mitochondria in them. Mitochondria are “power stations” of the cell where oxidation – the reaction between various substrates and oxygen – occurs, which results in the regeneration of ATP, the fuel that feeds the muscle fiber and allows it to contract.

Therefore, in order to develop endurance you have to do two things: build myofibrills (units of which muscle fibers are composed) and build mitochondria around them.

Classification of training loads based on long term adaptation

Methods of training are aimed at changing the structure of muscle fibers in the skeletal and myocardial muscle, as well as other systems (endocrine, for example). Every method is determined by several parameters that reflect the external features of a given activity: intensity of contraction, intensity of exercise, duration (repetition, series of the actual duration of exercise), rest interval and the number of sets or series (explained later). Each method activates internal processes which reflect immediate biochemical and physiological effects of a given training method. The final result is long term adaptation, which is the actual goal of using a particular training method.

For the sake of brevity I won’t spend much time on the internal processes elicited by each training method. I assume everyone reading this is a practitioner and is more interested in the description of the method and the long term adaptation it causes.

And so the methods are classified as follows.

1. EXERCISES OF MAXIMAL POWER

External features:

  • Intensity of contraction – 90 – 100%
  • Intensity of exercise – 10 – 100%. 

Barbell squats and bench press, for example, are activities with low intensity of exercise, but high intensity of muscle contraction. Throws performed with the wrestling dummy in high tempo and low rest intervals is the example of high intensity of both muscular contraction and exercise. 

  • Duration – usually short
    • Strength exercises are usually done for 1 – 4 repetitions
    • Speed-strength activity – up to 10 reps
    • Speed exercises – 4 – 10 seconds
  • Rest intervals – depends:
    • For strength exercises – 3 – 5 minutes
    • Speed-strength exercises – 2 – 3 minutes
    • Speed exercises – 45 – 60 seconds
  • Number of series/sets depends on the goals. 
    • So called “developing” sessions use 10 – 40 sets
  • Weekly frequency depends on the goals. 
    • If the goal is to develop myofibrills in the muscle fiber the series is performed to failure
    • If the goal is to develop mitochondria the series are performed to light fatigue

You just witnessed a fairly common phenomenon seen in Russian literature: the discordance of content and the title. This is exactly how it is in the text: weekly frequency – to failure or not, depending etc. It doesn’t make sense, I know, but we will have to forgive the good professor. – Smet.

Long term adaptation. 

  • If performed to failure, this method leads to the increase of myofibrills in glycolytic and intermediate muscle fibers
  • If done to mild fatigue – leads to the increased phosphorylation in glycolytic and intermediate fibers, eventually leading to the increase in mitochondria

2. EXERCISES OF NEAR MAXIMAL POWER


External features:

  • intensity of muscular contraction – 70 – 90%
  • intensity of exercise – 10 – 90%
  • Example – barbell squat or bench press done for more than 12 repetitions
  • If you increase the tempo of exercise and reduce the periods of contraction and relaxation of muscles, you turn these exercises into speed-strength type. Examples include jumping and throwing wrestling dummies

Duration:

  • generally 20 – 50 seconds
  • strength exercise are performed for more than 12 reps
  • speed strength exercises – 10 – 20 reps
  • speed exercises – 10 – 50 seconds

Rest intervals:

  • for strength exercises – more than 5 minutes
  • speed-strength activities – 2 – 3 minutes
  • speed activities – 2 – 9 minutes

Weekly frequency:

  • This method is aimed at increasing the power of anaerobic glycolysis
  • Currently there are no publications that demonstrate positive effect of near maximal exercises performed to failure.
  • However, numerous studies show deleterious effects from this type of exercise.

Long term adaptation:

  • most effective for increasing myofibrilles in glycolytic muscle fibers
  • no increase in mitochondria
  • If terminated well before failure or performed with pauses, this method leads to the development of mitochondria in glycolitic and intermediate fibers: there is no excessive acidosis in the muscle cell, and lactic acid is eliminated during rest. 

There is a method used by Russian athletes, called 10×10. An example in the video below:

Grigor Chilingaryan, one of the specialists from the laboratory of sports adaptology that was founded by Prof. Selouyanov. Start at 3:00

The session consists of three exercises: pushups, jumps and pullups, all done for 10 reps in a circuit, for ten rounds, the intensity –  about 80%. As you can see, the athlete never comes close to failure, and each rep is follower by a short rest – which gives the muscles a chance to get rid of lactic acid and avoid acidosis. This is the example of near maximal training without destroying the body. The coach recommends starting with lower rounds and building up gradually. 

To be continued

Weekly Training Log: The Beginning of the Taper

I weigh in for my first kettlebell competition in 2001 as Com. Angelo looks on. That day I weighed 156lbs. Granted, I had to cut some weight, but these days I’d have to cut off a leg.

This is an experimental post, summarizing my training for the past week. If I continue to publish these log entries, I won’t allow them to “crowd out” my usual material. I’d welcome your feedback in the Comments section.

July 6: I maxed out on 24kg kettlebell snatches: 32L + 32R. Showing poor judgment, I did this before my longest training ruck of the year. What was I thinking?! (Total snatch volume: 96 poods)

July 7: Rucked 42 miles with 25lbs. Hard.

July 10: Snatches on the minute: 20kg for 14 sets of 14; and 24kg for 8 sets of 6. (Total snatch volume: 327 poods)

July 11:

1) Snatches on the minute:    20kg for 6 sets of 14; 24kg for 8 sets of 7.     

2) Competition snatches:       24kg for 10L (hand kept getting soaked with sweat) + 34R.  

3) Circuit: 2 sets of Eccentric Isometric (EI) pushups; 2 sets of EI pullups +20lbs.; 3 sets of 36 Hindu squats

I’m aiming to do a snatch contest in mid-September where, to win a Class 1 ranking, I’ll need 124 reps. I think I can do this! (Total volume today: 255 poods)

July 12, 2019:

1) “Russian EDT”* snatches: 24kg for 10 one-minute sets at 16 reps/minute. 

2) Timed snatch set: 16kg for 10 minutes at 15 reps/minute. (Total: 410 poods)

3) Circuit: 2 sets of Eccentric isometric (EI) pushups; 2 sets of EI pullups +20 lbs.; 3 sets of 40 Hindu squats

* “EDT,” or “escalating density training,” is a subject for another post. In this case, what’s happening is that I snatch for one minute, rest minute, and repeat ten times. You can find details at Eugene’s excellent blog, Girevoy Sport After 40.

July 13, 2019

Rucked 12 miles (20km) with 30lbs. in 3 hours, 11 minutes. It was a hot morning at 90° F (32° C). I didn’t march fasted, but I only drank a light smoothie before and no food during.

My foot muscles have been tired all week. Also, I found that heavy, sweaty socks add serious weight to my feet! As an experiment, I departed from my usual combination (FoxRiver sock liners and Finnish M05 “sock liners,” which are really light wool socks in their own right). Instead, under the Finnish socks I wore a midweight pair of Injinji toe socks. Perfectly comfortable, but when I peeled all that sweaty wool off my feet, the pile weighed half a pound! (And as we know, an extra pound on the foot is as taxing as five pounds in your pack.) 

July 14, 2019

This marked the last day before I start to taper for the 50-mile Star Course three weeks away. Feet and calves tired from all the work.  

1) “Russian EDT” snatches: 24kg for 10 sets of one minute at just 12 reps/minute. I slowed down so I could keep my heart rate under my MAF number.

2) Timed set of snatches: 16kg for 10 minutes at 12 reps/minute.     (Total snatch volume: 300 poods)

3) Circuit: 2 circuits of (1) EI pushups +35lbs., (2) EI pullups +20lbs., and (3) Hindu squats x50.

Something very strange has happened with my bodyweight: I’m way more muscular than I “should” be. I’ve ballooned to a lean 182 lbs. (83kg). (In fact, I have more lean body mass now than I had total body mass last summer!) And yet I did just three months of barbell lifting over the course of the year, and since the spring I’ve done very little except for very-high-mileage rucking. All I can suppose is that maybe I’ve added so many mitochondria (the “powerhouses” of the muscle cells) that I gained 20lbs.?!

Your weight is junk data, your mirror is unreliable, and your feelings are fake news

Feeling fat, looking fat, and being fat are three separate things. You can “feel fat” without looking or being fat. I’ll hazard a guess that it’s mostly emotional, but even when you’re not being particularly neurotic, you can feel fatter or leaner depending on the fit of your clothes and your posture.

You can also look leaner or chubbier from day to day, just based on factors other than bodyfat. Posture is a big one. So is lighting. And biggest of all are the ebbs and flows of hydration and muscle glycogen. Do you ever glimpse yourself in the bathroom mirror and look surprisingly lean? Well unless little elves came during the night and gave you liposuction, you just happened to eat a combination of things that inadvertently flushed out subcutaneous water without depleting muscle glycogen. On that particular day, your skin happens to be at its thinnest and your muscles right at their fullest. Result: you look a little ripped, at least for a couple of hours. 

If you track your bodyfat every day, you find that there’s less correlation than you thought among your weight, your bodyfat level, and your appearance. Right now I weigh a lot, a level that was only normal when I was a powerlifter eating like an ox. And I don’t look very lean either: I’m waterlogged, with thick skin and blurry abs. And subjectively I feel a little chubby: I’m wearing the big-waisted jeans that I keep in storage for the occasional squatting cycle, when I bloat into a stout, gluteal Michelin Man, and if I strip off my shirt at yoga these days I look like a tanned marshmallow with a rubber band around its middle. And yet to my amazement, when I run the numbers, I find I’ve got way more lean body mass with just the same amount of fat as last summer, when I had a nice, wasp waist. Strange as it seems, even though I feel bloated and look pretty “blah” in my shaving mirror, I’ve got maybe the best body composition of my life right now.

So why the difference? It’s that I’m holding way more water too. Yes, I’ll have to change some things if I’m suddenly offered a photo shoot as a middle-aged underwear model. But for now, since no one has recognized my potential—give me a chance, Madison Avenue! I could be great!—I shouldn’t change a thing. 

I’m glad I know that, because now I won’t mess with success. But I want to underscore that the only reason I know it, despite cockeyed subjective impressions, is that I’ve got an objective measure in the Tanita scale. 

So here’s today’s takeaway for everyday lean, solid dogs:

  1. Your regular bathroom scale only gives you junk data, your mirror is unreliable, and how lean or fat you feel is fake news. 
  2. If you’re going to track something, make it something objective and reliable. Spend $40 for a Tanita scale. Track your actual bodyfat percentage. Everything else is evanescent, subjective, or both.
  3. Try out the many successful, easy approaches for leaning out, and (here’s my $.02 for the menfolk), once you get to 12%, just hold steady there. I’m not alone in thinking that that’s a sweet spot: easy to reach, easy to maintain, and makes you fit and healthy and mobile and trim without being onerous.

Forty-Mile Ruck: Lessons Learned

To prep for the (in)famous Star Course, I tried a 42-mile ruck march.

I’d read one man’s AAR suggesting that in training you aim for 40 miles (64km) in something close to 10 hours, and on paper that sounded almost reasonable. It’s only 15 minutes per mile, right? Heck, I’ve motored along at that speed in perfect contentment for plenty of 12-mile marches with a 30# pack. So with just 20# dry (not even 10kg), wouldn’t I cover at least the first half of my journey at that pace? And if I allowed myself a full 12 hours, plus an extra hour for lunch, that would be almost leisurely! Right?

That was HUBRIS, and I got punished! Instead of treading a merry 13 hours, I slogged out a tough 15½ hours, and rather than a carefree and gay picnic walk, at times it felt like a death march.

This was a major lesson in all the factors that can slow a march down. Let me count the ways!

What I Did Badly

Feeling so sluggish, I sensed I was in for a long day. But I had no idea just how long.

First was my own poor condition. I’d been training hard, demanding a lot of my foot muscles (which work overtime in yoga and kettlebell lifting too), and the day before my ruck romp, I’d had a small migraine that I tried to cure by testing my rep max in the kettlebell snatch. (That worked pretty well, by the way.) Coupled with a 4am wakeup, it’s little surprise that I felt like hell when I started my walk, and it slowed me down. By mid-morning I was already an hour behind schedule. And that was before other adverse conditions started piling up.

I am blessed to live out in the country. Only problem is, my body thinks it belongs in a different country.

What other adverse conditions? Next was the heat, which is my personal kryptonite. I’m stocky and descended entirely from Northern European bog dwellers. Even in modest heat, a full sun clobbers me like an axe.

I made some poor nutrition choices too. Normally in these long events, I thrive on a scant 25g of carbs per hour and, being keto-adapted, I draw the rest of my calories from body fat. It’s a trick I got from ultra champ Zach Bitter and it makes me immune to the usual nausea and GI trouble of endurance events. But on this morning I treated myself to a big, sugary frozen mocha, and it was way too much carbs and gook. I’ll spare you, gentle reader, an account of the results and just summarize them as “sub-optimal.” Lesson: Just 25g of carbs per hour.

If you want to geek out on this stuff, read the work of Mike Prevost.

By my choice of routes, I also gave myself a (poorly timed) lesson in how much you can be slowed by terrain. The Army has researched rucking speed and found that, even more than pack weight, you’re slowed by factors as mundane as the ground’s surface. And elevation gain is another biggie. When climbing a 10% grade, you cut your speed in half. (EDIT: Researcher Adam Scott finds that it’s only a one-third reduction.)So on one steep 4-mile stretch, I climbed for almost two hours.

Nor did I factor in stream crossings. Foot care guru John Vonhof insists that you remove shoes and socks at streams, carry them across, and dry your feet before putting them on again. I did this each time, dutifully but grudgingly, but I ate up nearly an hour and disliked feeling my way painfully across the stream bottom in sore, bare feet. Lesson: Bring water shoes and a microfiber hand towel. On trips where I’ll recross the stream at the same point, I can even stash them near the crossing to wait for my return trip.

Finally, maybe it wasn’t the best idea to wear brand-new boots. Though they didn’t need much breaking in, they still required time-consuming experimentation on the trail, trying different combinations of socks, liner socks, and lacing.

Ridiculous math like this is an example of why the metric Mondopoint system is so great. You measure your feet in millimeters. That’s your size. Simple.

However, there was one thing about these boots that was a godsend: they’re actually big enough! My toes have never been so free. I owe this too to John Vonhof, whose simple trick is to remove the insoles from your shoes, set them on the ground, and stand on them. If your feet lap over the insoles at any point, or even touch the edge, the shoes are too small. That’s how I went from a size 9.5 to a 10.5 Wide!

What Went Great

Aerobic base: Aerobically this trip posed little challenge. As in all my training, I throttled back enough to stay within my “MAF” heart rate (“max aerobic function”). And even on such a long ruck, I found, as long as I stay within my MAF heart rate, I can put my legs on cruise control and motor along indefinitely. My feet might get sore, but my heart and lungs can hack it just fine.

Our Lady of Electrolytes and Mr. Delirium

Electrolytes: At long last, I didn’t cramp! I can’t take credit for this. The unsurpassable Lean Solid Girl met me at my turnaround point with a princely feast of burritos, trail mix, cold drinks, and (best of all) electrolytes.

Blisters: I only got one blister, on my heel. Zero blisters would be better, but I’ll take this as a victory considering this was a distance PR in boots that were new out of the box.

The Great Takeaway

The home stretch. From this bridge, it’s 3 miles to my door. The last time I passed it feeling this tired was only a few months ago. That night I was doing my first 12-miler, but now that’s just a warmup. Reflecting on that was a real morale boost. #cookiejar

I didn’t quit. That’s the great takeaway. At 5:30am, only 5 minutes into the day, I still had a lingering headache from the day before, felt like hell, and had no spring in my step, and I thought, “I picked an awful day to do this. It will be amazing if I actually finish 40 miles today.” And I was right on both counts: it was terrible timing–WTH kind of plan is “be sick all day, then max out on snatches, and then do 40 miles the next day?!”–and it’s amazing to me that I finished it. I should have rescheduled–stupid stuff is stupid, and it would have required effort to choose a worse day for this. But once I (foolishly) committed to it and decided to stick with the (dumb) plan, it was almost a certainty that I’d finish–eventually–as long as I didn’t quit.

Rucking up at Mile 23. Don’t believe the smile, it’s a lie. I’m feeling pretty sorry for myself here. Out of the frame, milady’s Prius is whispering, “Give up! I’ll take you home right now. How about some air conditioning?”

And that, friends, is the big lesson. (Cue the “rousing emotional crescendo music!”) It seems that in an event like this–a low-intensity slog played out over a very long time–there’s almost no way to suck so much that you can’t finish. There’s no opponent to KO you, pin you, or steal the ball, and you need zero coordination or athletic talent–it’s just walking. Physically the demands aren’t even very intense or the perils great: you won’t get a concussion or cascade off the side of Mount Everest. You can suck as much as you want for as long as you want, but unless you decide to quit (or you get abducted off the road by a UFO), you are pretty much assured of succeeding eventually. As Goggins says, “No talent required.”

Power to the People!

Part 6 of our series “Tao of the Lazy Badass” and part 7 of our retrospective series, “Twenty Years of Pavel Tsatsouline.” (Follow the links to find all previous installments.)

In our last post, we talked about “fragmenting the load,” a fancy way of saying that you should chop up your workload into small, easy chunks. Psychologically, you will enjoy it more, and physiologically it turns out that you can perform a much higher volume of work that way. (And volume is the magic variable for the lazy badass.)

Twenty years ago in a normal gym, if you were doing deadlifts, you stood out as an oddball. And if you deadlifted and did two sets of five, it was a dead give-away. To anyone else who followed Pavel “the evil Russian” Tsatsouline, it was as obvious as a facial tattoo saying, “Hey, comrade! I’ve been reading Power to the People!” 

In his milestone book, Pavel said two things that were heretical in the American weight-training world of the 1990s, which was still ruled by the ideas of bodybuilders. First, he said that almost all of us—especially average people—should base our training on the deadlift. Not the mullet lift bench press and not the squat, but the much-feared, unjustly maligned deadlift. Second, and shockingly, he advised deadlifting almost every day. Bodybuilders would never dream of working a bodypart more than three times per week, at a maximum, and certainly not the deadlift. And many American powerlifters deadlifted at most twice a month. But Tsatsouline was coming from a different world, the world of Soviet sports science, with its time-honored technique of jacking up volume by using frequent workouts, modest weights, and lots of sets. 

Specifically sets of five. In the Soviet tradition, five reps is almost a magic number. It occupies a sweet spot in the rep range. First, it keeps intensity modest. On a set of five, even if you go all-out, it’s hard to use much more than 80% intensity (meaning eighty percent of your 1-rep max). If you’re smart you’ll go even lower—mostly I’d stay close to 70%—but even if you get over-enthusiastic and add too much weight to the bar, as long as you’re doing sets of 5, you can’t overdo the intensity too badly. Think of the 5-rep set as a kind of circuit breaker that keeps intensity in the safe range.

Second, because sets of five are fairly short, you can hold good form. That is a very, very big deal. When people get injured while squatting, for example, you can usually blame it on fatigue. They’ll be 8 or 10 or 15 reps into a set, when the small postural muscles are tired and lazy, and their backs bow or their knees drift off track. Injury! But in a 5-rep set, you only need to hold your form and your mental focus together for considerably less than half a minute. Especially when using moderate weights. Less injury, less inflammation, and faster recovery. Over time, that means more volume, which means better training results. In sum, then, a five-rep set is short enough for perfect form and long enough to keep the weights reasonable.

As I got stronger in the deadlift, 5-rep sets of deadlifts got too tiring, so I dropped to “doubles and triples” (2-rep and 3-rep sets). But leave the doubles and triples to advanced athletes! You can get yourself in big trouble. Instead, if deadlifts are a problem, you can consider “block pulls” or “rack pulls.”

So in Pavel’s first famous protocol, he prescribed just two reasonable sets of five, every Monday through Friday. Like most of his programs, he called for just “one pull, one press.” The workouts were short, lasting about 20 minutes, and refreshing. If you were following the program correctly, you really would end up feeling stronger and peppier at the end than the beginning. In fact, Pavel avoided even calling them “workouts,” which connotes exhaustion, and instead told you to call them your “practice sessions.” 

Here as in all lazy badass programs, you avoid fatigue. To use another favorite metaphor, when you do fatiguing, high-intensity exercise, you are expending finite recovery resources, like withdrawing money from a bank account. It is fine to make a big “withdrawal” on game day, when something important is at stake. But you must not train like that regularly. In your day-to-day training, you deposit money into your account, with enlivening, invigorating practice sessions that are recoverable or even downright restorative.

A Farewell to Fatigue: How to “Fragment the Load”

Did Hemingway invigorate himself to run with the bulls in Pamplona by blowtorching his lungs doing Crossfit? Hell no. Papa knew how to pace himself.

Part 5 in our series “Tao of the Lazy Badass.” Find the first four installments here, here, here, and here.

You already know the First Law of the Lazy Badass: “Do a lot of volume while minimizing fatigue.” Today we teach you how to minimize fatigue.

When you accumulate volume (i.e. total reps), you’re depositing money in the bank. The deposits seem small and insignificant, but you make them often and with no sense of sacrifice. That’s important: we want you refreshed by your workouts and recovered quickly. That way you’ll crave your next bout of exercise—you dirty endorphin junky!—and you’ll be fresh and ready to hit the iron or the trail again ASAP. That is why the lazy badass minimizes fatigue.

Sounds great in theory. But how do you maximize volume without also building up fatigue? Get ready, because here comes the second big secret …

Fragment the load

“That’s pretty gnomic,” you might be saying. “WTF does that mean?” It means that you should space out the work. Chop it into bite-sized pieces.

Let me start with an example of the WRONG way to do a lot of volume.

Gironda was not a tactful man.When the Iron Guru first met a young unknown named Schwarzenegger, who announced his intention to become Mr. Universe one day, Gironda sneered and retorted, “You look like a fat fuck to me.”

In popular muscle media, there’s a renaissance in people writing about “German Volume Training,” the (in)famous bodybuilding protocol that, despite its name, probably originated in Hollywood with Vince Gironda, preceptor to the young Arnold Schwartznegger and “Iron Guru” of bodybuilding in the 1950s and ‘60s.

Vince taught trainees to rack up a lot of volume—so far so good!—but he made them hurry through that at a breakneck pace with very little rest. He prescribed a whopping 100 total reps per exercise, done in 10 sets of 10 with just 30-60 seconds of rest in between. That’s massively fatiguing. And you have to settle for using wimpy weights, because you can’t complete that protocol with even moderate poundages. And you will need days to recover from it. And it’s the opposite of fun and refreshing. It takes great willpower to do it even one time, and you will NOT look forward to doing it again. 

Fatigue sucks, and that’s why it is contrary to the Tao of the lazy badass to rush through volume with little rest, a thundering pulse, and buckets of sweat. To delay fatigue and accomplish more total work, the lazy badass fragments the load by breaking it up into many short sets. Instead of completing your sets and reps quickly, space them out. For example, instead of blowtorching the muscles with high-fatigue sets of 10 reps, an aspiring lazy badass could do the following:

Set up a clock near your kettlebell / barbell / whatever. At the top of every minute, do an easy 4 reps. That might only take you 10-20 seconds, and that’s fine. Rest for the remainder of the minute. At the top of the next minute, do your next four reps. Keep repeating, making haste slowly. While your friend attempts the German Volume protocol with his trachea on fire, you’ll be happy as a clam. As the minutes tick by, not only won’t you tire out, you might actually feel stronger and zestier than when you started.

Training “on the minute” is associated with Scott Sonnon, the martial artist who brought back exercise clubs in this country.

Your friend will be very lucky to complete his 100 reps at all; but you’ll cruise along contentedly, til after 25 minutes you’ve cranked out your 100 reps and gotten high on endorphins too. And if you start to tire before then and your heart rate starts to climb, no problem! Just drop down to 3 reps per minute. Or even 2 reps. There is no time limit here! Your only job is to accumulate volume, and there’s no penalty for doing it slowly. 

This “on the minute” protocol is only one of the many proven ways for a lazy badass to fragment the load. In our next installment or two, we’ll talk about some of the other techniques. You can pick the one that suits your schedule and your pace the best. It makes little difference. They all follow the Tao of the Lazy Badass (which, once again, is to maximize volume and minimize fatigue) by breaking up the work into small, enjoyable packets with lots of rest smeared all over, like butter on pancakes.